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ABSTRACT
This study evaluates the predictive accuracy of Regression Trees (RTrees) and Adaptive Neuro-
Fuzzy Inference Systems (ANFIS) for estimating the carbon footprint in residential construction 
projects. The results indicate that the ANFIS significantly outperforms the RTrees in predictive 
accuracy, achieving a reduction in Root Mean Square Error (RMSE) by 84.3% in the production 
stage (from 0.53174 to 0.08346) and by 40.4% in the operational stage (from 0.13865 to 0.08265). 
These improvements underscore the effectiveness of the ANFIS in capturing complex nonlinear 
relationships in carbon footprint data. Despite its superior accuracy, the ANFIS exhibits higher 
computational costs, requiring an average training time of 76.2 s, compared to 12.4 s for the RTrees. 
These findings highlight the trade-offs between accuracy and computational efficiency, providing 
valuable insights for selecting machine learning models in sustainable construction. The study 
concludes that integrating hybrid approaches or ensemble learning could further enhance predictive 
performance while maintaining efficiency.

Keywords: ANFIS, carbon emission, machine 
learning, regression trees, sustainable construction

INTRODUCTION

The construction industry significantly 
contributes to global greenhouse gas 
emissions, accounting for approximately 
39% of the world's final energy consumption 
and 37% of energy-related carbon dioxide 
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(CO2) emissions in 2021 (Chen et al., 2023). These figures underscore the urgent need for 
a transformative shift towards sustainable practices within the sector. A critical component 
of this transformation is the ability to accurately predict a project's carbon footprint, 
enabling stakeholders to identify areas for improvement and implement effective strategies 
to minimize emissions (Mahapatra et al., 2021). This study focuses on developing and 
comparing advanced machine learning models to enhance the accuracy of carbon footprint 
predictions in residential construction projects.

Over the past decade, machine learning has emerged as a powerful tool in various 
industries, including construction, for its ability to analyze large datasets and uncover 
complex relationships between variables. Comprehensive, traditional methods of carbon 
footprint estimation, such as life cycle assessment (LCA), are often time-consuming and 
prone to errors due to data uncertainties (Marsh et al., 2023). Integrating machine learning 
techniques offers a promising solution to these challenges by providing more precise and 
efficient predictions, thus supporting the construction industry's shift toward sustainability.

While several studies have explored the application of machine learning in carbon 
footprint prediction, there is a noticeable gap in comparative analyses of different models 
within the context of residential construction. Previous research has primarily focused on 
individual methodologies, such as support vector regression (Farghaly et al., 2020; Hasan 
et al., 2025; Mamat et al., 2025) and artificial neural networks (Sergeev et al., 2022; Yao 
et al., 2024). However, a direct comparison of different machine learning approaches 
remains underexplored, particularly in their ability to predict carbon footprints in residential 
projects. Machine learning methodologies face significant limitations that can impede their 
effectiveness across diverse applications. 

A major challenge is the dependency on large, high-quality datasets (Gong et al., 2023). 
Insufficient data can result in governance failures (Vinayak & Ahmad, 2023) and poor 
decision-making (Kim, 2024). Machine learning models also struggle with generalizability, 
particularly in applications like carbon emission prediction, where diverse data is necessary 
(Yiming et al., 2024). Additionally, imbalanced datasets (Jia et al., 2024), which are 
common in atmospheric studies, complicate model training. Conceptual and statistical 
limitations, such as unmodeled dependencies (Pillai et al., 2023), further exacerbate these 
issues. Addressing these challenges requires robust data governance, diverse training sets, 
advanced techniques, and increased awareness of ML's inherent limitations.

This study aims to address the existing gap in the literature by rigorously comparing 
the performance of two widely recognized machine learning models: RTrees and ANFIS. 
The primary objective is to determine the most accurate and efficient model for predicting 
carbon footprints in residential construction. Through an in-depth evaluation of the 
predictive capabilities of the RTrees and ANFIS, this research provides stakeholders 
with a valuable tool to mitigate the environmental impacts associated with construction 
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activities. Moreover, this study contributes significantly to the growing body of knowledge 
by offering a comprehensive analysis of the strengths and limitations inherent in both 
models, thus providing actionable insights for future research directions. The importance 
of this research lies in its potential to refine carbon footprint prediction methods, which is 
critical to achieving sustainability goals in the construction sector. The anticipated outcomes 
are expected to influence policy formulation and practical applications, facilitating the 
reduction of the environmental footprint of residential buildings. Ultimately, this study 
supports ongoing efforts to promote a more sustainable built environment by advancing 
the integration of machine learning techniques into real-world construction practices.

MATERIALS AND METHODS

This study employs a robust and systematic methodological framework to critically evaluate 
the performance of the RTrees and ANFIS in predicting the carbon footprint of residential 
construction projects. The methodology is meticulously designed to ensure the reliability 
and reproducibility of the results. The main phases of the approach include data collection, 
preprocessing, model development, performance evaluation, and a comprehensive 
comparative analysis. Each stage is carefully aligned with the study's core objectives to 
thoroughly assess the models' predictive capabilities, facilitating a nuanced understanding 
of their effectiveness in the context of carbon footprint prediction in the construction sector.

Computational Cost and Deployment Considerations

The computational cost and hardware-software requirements for deploying the machine 
learning models were carefully assessed to evaluate their practicality in real-world 
applications. The training and testing processes were conducted on a system equipped 
with an Intel Core i7-12700K processor, 32GB Random Access Memory (RAM), and an 
NVIDIA RTX 3080 graphics processing unit (GPU). The software environment included 
MATLAB R2023a and Python 3.9, with essential libraries such as Scikit-Learn and 
TensorFlow. While the RTrees demonstrated lower computational overhead, requiring an 
average training time of 12.4 s, ANFIS exhibited significantly higher resource demand, 
with an average training time of 76.2 s. This discrepancy highlights the trade-off between 
computational efficiency and predictive accuracy. The implementation of the ANFIS on 
large-scale datasets may necessitate high-performance computing resources, increasing 
deployment costs. Additionally, licensing costs for proprietary software such as MATLAB 
may pose financial constraints for small-scale projects. To mitigate these challenges, 
cloud-based solutions and GPU acceleration strategies can be explored to enhance model 
scalability and accessibility.
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Data Sources and Process

This study utilizes data from a residential construction project featuring a reinforced 
concrete structure. The dataset was generated using Autodesk Revit Architecture 2018, 
which enabled the creation of a detailed 3D building model to estimate material quantities 
and their associated properties. A hybrid approach combining manual calculations and 
automated tools was applied to assess the carbon emissions at various stages of the 
building’s life cycle using LCA. Manual calculations were based on the Inventory of Carbon 
and Energy (ICE) database, which provides standardized embodied carbon and energy 
coefficients for construction materials. To enhance the accuracy of the carbon footprint 
estimations, two additional databases, GaBi and Ecoinvent, were integrated into the One 
Click LCA software, ensuring a comprehensive assessment of emissions.

For transportation-related emissions, factors such as material transportation distances, 
vehicle types, and fuel consumption rates were incorporated using One Click LCA to 
estimate the carbon footprint associated with logistics. The operational energy consumption 
of the building was determined using actual electricity consumption data collected over 
an extended period, ensuring real-world applicability.

The dataset consists of 1,000 instances, each with 20 features, representing key 
variables such as material types, transportation distances, energy consumption rates, and 
demolition waste. To ensure robust model training, the dataset was pre-processed to remove 
inconsistencies, handle missing values, and standardize features for better comparability. 
Following standard machine learning practices, the dataset was split into 80% training 
data (800 instances) and 20% testing data (200 instances) to allow for model evaluation 
on unseen data. To provide clarity, Table 1 presents a structured summary of the dataset, 
including the number of records, feature categories, and the train-test distribution.

Table 1 
Dataset features and train-test split

Feature 
category

Description Number of 
features

Variables

Material 
properties

Embodied carbon, weight, volume 6 Concrete, steel, wood, glass, 
plastic, bricks, cement, sand

Transportation Distance, vehicle type, fuel 
consumption

4 Truck, excavator, cranes, 
backhoe

Operational 
energy

HVAC usage, lighting, and 
electricity consumption

5 kWh consumption

Demolition waste Material recycling rate, landfill 
emissions

5 Concrete waste, metals, glass, 
plastic, bricks, cement, sand

Total records Number of data points 1,000 -
Train-test split Training (80%), testing (20%) 800 train, 200 test

Note. HVAC =  Heating, ventilation, and air conditioning
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System Boundaries

The unit process in LCA is primarily determined by the system boundaries defined for 
the study. In this study, the system boundaries are clearly outlined in Figure 1. One Click 
LCA was employed to facilitate efficient material mapping. The environmental impacts 
of various building materials across different life cycle stages were assessed using a 
combination of three key databases. Initial manual calculations were conducted using 
the Inventory of ICE database. In contrast, software-based calculations were performed 
using One Click LCA, which integrates the GaBi and Ecoinvent databases. This study 
evaluates the carbon footprint across four life cycle phases, focusing on the stages within 
the system boundaries presented in Figure 1. These phases include: (1) Construction, 
which encompasses material production, transportation, and on-site construction activities. 
The transportation component considers fuel consumption, the number of vehicles, and 
material quantities. (2) Operations involve using heating, ventilation, and air conditioning 
(HVAC) systems, lighting, water supply, and equipment. (3) Demolition, which addresses 
the environmental impacts associated with the destruction and renovation of the building.

Figure 1. Boundaries of the system within the unit process
Note.  BIM = Building Information Modeling; LCA = Life cycle assessment; ICE = Inventory of Carbon and 
Energy; GaBi and Ecoinvent = Proprietary names of databases

Building Information Modeling

This study presents a case study of a bungalow-type residential building constructed 
with a reinforced concrete structure in Taman Rapat Setia Baru, Ipoh, Malaysia. The 
building's structural design is depicted in Figure 2, which serves as the focal point for the 
contextual analysis. The total built area is approximately 614 m², featuring a 2.5-meter-
high Dutch gable roof and 200 mm-thick concrete stone walls. Additionally, a fired clay 
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brick parapet wall enhances the overall structural integrity. The architectural plans were 
meticulously developed in AutoCAD (Figure 3), which were then imported into Autodesk 
Revit Architecture 2018 to create detailed 3D models and integrate specific building 
parameters. Architectural and structural components were simulated using the building 
information modeling (BIM) through Autodesk Revit to enable precise floor plans and 

Figure 2. Three-dimensional architectural model of the case study

Figure 3. Floor plan



PREPRINT

Machine Learning Models for Carbon Footprint in Construction

comprehensive building designs. Enscape, a real-time rendering tool integrated with Revit, 
further enhanced the visualization process, providing high-fidelity renderings with a single 
click, as demonstrated in the 3D visualization shown in Figure 2.

Life Cycle Assessment Database

The integral element of the LCA is carefully selecting a suitable life cycle database. This 
study employs an LCA database embedded with carbon emission rates, leveraging BIM 
to extract data on construction materials. Using the GaBi software, the study simulates 
the lifecycle impacts based on material quantities, energy consumption by construction 
equipment, fuel usage and time in transportation, and operational energy demands. 
The GaBi’s database is distinguished by its global industrial life cycle data coverage. 
Furthermore, the ICE database enriches the analysis by providing embodied energy and 
carbon metrics. At the same time, the Ecoinvent dataset delivers a comprehensive cradle-
to-gate inventory spanning energy production, material extraction, chemicals, metals, 
agriculture, and logistics, ensuring rigorous and holistic environmental assessment.

Data Pre-Processing

The dataset underwent an extensive pre-processing phase to ensure optimal conditions 
for model development. This phase included meticulous data cleaning to resolve 
inconsistencies, such as managing missing values and outliers, and feature standardization 
to render variables directly comparable. Standardization was a pivotal step in enhancing 
the efficiency and accuracy of the machine learning algorithms. This stratified division was 
selected to achieve a balance between maximizing the data available for model training and 
ensuring rigorous evaluation of unseen data. The training set supported model construction 
and parameter tuning, while the testing set served as an independent benchmark for 
validating model performance.

Model Architecture and Implementation

The architecture of the proposed models, the RTrees and ANFIS, has been expanded in 
detail to enhance clarity and reproducibility. The RTrees model follows a hierarchical 
decision-making structure where data is recursively partitioned into nodes based on entropy 
or variance reduction. The root node is selected based on the most informative feature, and 
branches are generated until a stopping criterion, such as a minimum leaf size, is reached. 
A pruning mechanism is applied to prevent overfitting. Figure 4 illustrates the RTrees 
workflow, highlighting its feature-splitting process. 

In contrast, the ANFIS model integrates fuzzy logic with a multi-layer artificial neural 
network (ANN) to capture nonlinear relationships within the dataset. The five-layer 
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architecture of the ANFIS consists of (1) fuzzification, where crisp input variables are 
converted into fuzzy membership functions, (2) rule inference, where Sugeno-type fuzzy 
rules are applied, (3) normalization, where rule strength is adjusted, (4) defuzzification, 
which maps fuzzy results to a continuous output, and (5) final summation, which aggregates 
rule-based outputs to provide the final prediction. The training process employs a hybrid 
optimization approach combining the gradient descent method and the least squares 
estimator (LSE) to adjust membership function parameters iteratively. Figure 5 presents a 
structured visualization of the ANFIS model, illustrating the connectivity between layers. 
These expanded descriptions provide a deeper understanding of the predictive models 
used in this study, supporting their effective implementation in carbon footprint estimation.

To enhance clarity and reproducibility, we have included a detailed step-by-step 
explanation of the RTrees model used for carbon footprint estimation in residential 
construction, as shown in Figure 6. The implementation begins with data preprocessing, 
where missing values are handled, numerical variables are normalized, and categorical 
variables are encoded. The dataset is divided into 80% training and 20% testing sets to 
ensure a fair evaluation. Once the data is prepared, the regression tree model is constructed 

Figure 4. Regression tree flow diagram
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using a recursive partitioning approach. The root node is selected based on the optimal 
splitting criterion, typically minimizing variance within child nodes. The dataset is 
progressively divided into smaller subsets until a stopping condition is met, such as reaching 
a minimum leaf size. After the initial tree construction, a pruning process is applied to 
eliminate branches that do not contribute to improved performance, reducing overfitting 
and enhancing model generalization. Following the model training, the RTrees model is 
evaluated using key performance metrics, including the RMSE, Mean Squared Error (MSE), 
and Mean Absolute Percentage Error (MAPE). The final trained model is then applied to 
predict carbon footprint values across different life cycle stages of construction, providing 
insights into emission trends.

The ANFIS model integrates fuzzy logic with artificial neural networks to enhance 
predictive accuracy in carbon footprint estimation. The ANFIS implementation begins with 
data preprocessing, where input variables such as material usage, transportation distances, 
energy consumption, and demolition waste are normalized to ensure consistency, as 
shown in Figure 7. Unlike RTrees, which rely on decision trees, ANFIS employs a fuzzy 
inference system (FIS) to model nonlinear relationships within the dataset. During the 
model development phase, triangular membership functions are used to define fuzzy rules, 
allowing the system to interpret input variables more effectively. The training employs 
a hybrid optimization technique, combining the gradient descent method with the least 
squares estimator to adjust membership function parameters iteratively. This adaptive 

Figure 5. The foundational principle of the Adaptive Neuro-Fuzzy Inference Systems (ANFIS) architecture
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learning process refines the model's generalization ability across different construction 
scenarios. After training, the ANFIS model is tested on the reserved dataset, and its 
predictive accuracy is assessed using RMSE, MSE, and MAPE. The ability of ANFIS to 
capture complex patterns in carbon emissions makes it particularly useful for analyzing 
environmental impacts at various construction stages. By leveraging the strengths of fuzzy 
logic and neural networks, the model provides a robust framework for estimating carbon 
footprints with high precision.

Figure 6. Regression trees implementation
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Regression Trees 

The divergence between statistical modeling and machine learning lies in their 
methodologies and objectives. The statistical models employ explicit mathematical 
equations to represent relationships between variables, estimating population parameters 
from sample data (Selvan & Balasundaram, 2021). In contrast, the machine learning 
autonomously extracts predictive patterns from data, bypassing the need for predefined 
rules or assumptions (Ramon et al., 2024). Both frameworks utilize training and testing 

Figure 7. Adaptive neuro-fuzzy inference system implementation
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datasets, but machine learning incorporates hyperparameter tuning via validation datasets, 
enhancing its capacity to analyze both small and large datasets with superior predictive 
accuracy. Its ability to learn directly from historical data makes it a powerful tool for data-
driven predictions. Regression trees, among the diverse machine learning methodologies, 
especially the classification and regression trees (CART) technique, are recognized for 
their transparency, minimal preprocessing requirements, and resilience to outliers and 
incomplete data (Mienye & Jere, 2024). Unlike traditional approaches, CART models can 
analyze relationships without data normalization, making them particularly suitable for 
complex, multifaceted datasets.

This study leverages the regression tree analysis to estimate carbon emissions 
within LCA boundaries, focusing on parameters such as construction material usage and 
transportation distances. The model was implemented in MATLAB using the fine tree 
algorithm, which systematically partitions the data based on key lifecycle features of 
construction projects. Figure 4 visualizes the structure and decision-making process of 
the regression tree. To optimize the model’s performance, hyperparameter tuning was 
conducted, with particular attention in refining the minimum leaf size for terminal nodes, 
thereby enhancing the model’s predictive capabilities.

The regression trees provide a robust alternative to linear methods, excelling in 
modeling non-linear and intricate relationships by leveraging decision trees to predict 
continuous response variables. The methodology partitions data recursively into smaller, 
homogeneous regions, assigning each region a constant value equal to the average response. 
This recursive partitioning, performed in a top-down greedy manner, optimizes splits to 
minimize the sum of squares error, as formalized in Equation 1:

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 �𝑆𝑆𝑆𝑆𝑆𝑆 = ��𝑥𝑥𝑚𝑚 − 𝑦𝑦�𝑅𝑅1�
2 + ��𝑥𝑥𝑚𝑚 − 𝑦𝑦�𝑅𝑅2�

2 +
𝑚𝑚∈𝑅𝑅2𝑚𝑚∈𝑅𝑅1

� [1] 
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 signify the 
predicted emissions for regions 1 and 2, respectively. The regression trees are particularly 
useful for exploratory data analysis due to their simplicity and interpretability. However, 
they are prone to overfitting, which can limit their generalization capabilities and predictive 
accuracy when compared to more advanced machine learning techniques.

Adaptive Neuro-Fuzzy Inference Systems

The adaptive neuro-fuzzy inference system is a cutting-edge neuro-fuzzy architecture 
that models complex and nonlinear systems (Chopra et al., 2021). The ANFIS uniquely 
integrates the adaptive learning capabilities of neural networks with the interpretability 
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of fuzzy logic, leveraging Sugeno’s first-order adaptive fuzzy inference model (Mamat, 
Kasa, & Razali, 2019). Its hybrid optimization methodology, combining gradient descent 
and least-squares algorithms, enables precise parameter adjustment, making it a powerful 
tool for capturing and modeling sophisticated system behaviors (Karaboga & Kaya, 2019).

This study implemented the ANFIS model using MATLAB to address the complexities 
and uncertainties associated with carbon footprint data. By integrating the strengths of 
fuzzy logic and neural networks, ANFIS is particularly effective for modeling nonlinear 
and uncertain systems such as carbon footprint prediction. The model was meticulously 
fine-tuned by adjusting the membership functions, which are crucial for defining the degree 
of membership of data points within specific fuzzy sets.

A triangular membership function was selected due to its simplicity and computational 
efficiency, which are especially advantageous when working with large datasets or real-time 
applications. Unlike more complex functions, such as Gaussian or bell-shaped, triangular 
membership functions require fewer parameters, thereby reducing computational overhead 
and preserving flexibility for modeling uncertainties. This simplicity also enhances the 
interpretability of fuzzy rules, a key factor in ensuring the model's practicality in the 
construction industry. To improve predictive accuracy, the ANFIS model employed an 
iterative learning process to optimize the parameters of the triangular membership functions. 
The model refined these functions through repeated training cycles to better capture the 
complex patterns in carbon footprint data, leading to more reliable and accurate predictions. 
As shown in Figure 5, the ANFIS architecture comprises five distinct layers. The following 
equations determine the outputs of the first layer:

𝐿𝐿1𝑚𝑚 = 𝜇𝜇𝐴𝐴𝑚𝑚(𝑥𝑥), 𝑚𝑚 = 1,2 

𝐿𝐿1𝑚𝑚 = 𝜇𝜇𝐵𝐵𝑚𝑚(𝑦𝑦), 𝑚𝑚 = 3,4 

 

 [2]𝐿𝐿1𝑚𝑚 = 𝜇𝜇𝐴𝐴𝑚𝑚(𝑥𝑥), 𝑚𝑚 = 1,2 

𝐿𝐿1𝑚𝑚 = 𝜇𝜇𝐵𝐵𝑚𝑚(𝑦𝑦), 𝑚𝑚 = 3,4 

 

 [3]

where, x is the input to node i, and Ai represents the linguistic function label. The terms 
μAi (x) and μBi (y) are Gaussian membership functions defined as:

𝜇𝜇𝐴𝐴𝑚𝑚(𝑥𝑥) = exp �− �
𝑥𝑥 − 𝑐𝑐𝑚𝑚
𝑎𝑎𝑚𝑚

�
2
�  [4]

where, ai and ci  are the deviation and centre parameters of the membership function, 
respectively. The outputs of the second layer are computed as:

𝐿𝐿2𝑚𝑚 = 𝑤𝑤𝑚𝑚 = 𝜇𝜇𝐴𝐴𝑚𝑚(𝑥𝑥)𝜇𝜇𝐵𝐵𝑚𝑚(𝑦𝑦), 𝑚𝑚 = 1,2  [5]
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where wi   represents the strength of the rules. The third layer outputs are given by:

𝐿𝐿3𝑚𝑚 = 𝑤𝑤𝑚𝑚��� =
𝑤𝑤𝑚𝑚

𝑤𝑤1 + 𝑤𝑤2
, 𝑚𝑚 = 1,2  [6]

where, 𝑤𝑤𝑚𝑚���  are the normalized weights. In the fourth layer, the outputs are calculated as:

𝐿𝐿4𝑚𝑚 = 𝑤𝑤𝑚𝑚���(𝑝𝑝𝑚𝑚𝑥𝑥 + 𝑞𝑞𝑚𝑚𝑦𝑦 + 𝑟𝑟𝑚𝑚), 𝑚𝑚 = 1,2  [7]

where, 𝐿𝐿4𝑚𝑚 = 𝑤𝑤𝑚𝑚���(𝑝𝑝𝑚𝑚𝑥𝑥 + 𝑞𝑞𝑚𝑚𝑦𝑦 + 𝑟𝑟𝑚𝑚), 𝑚𝑚 = 1,2 , 𝐿𝐿4𝑚𝑚 = 𝑤𝑤𝑚𝑚���(𝑝𝑝𝑚𝑚𝑥𝑥 + 𝑞𝑞𝑚𝑚𝑦𝑦 + 𝑟𝑟𝑚𝑚), 𝑚𝑚 = 1,2  and 𝐿𝐿4𝑚𝑚 = 𝑤𝑤𝑚𝑚���(𝑝𝑝𝑚𝑚𝑥𝑥 + 𝑞𝑞𝑚𝑚𝑦𝑦 + 𝑟𝑟𝑚𝑚), 𝑚𝑚 = 1,2  are known as consequent parameters. Finally, the output of the fifth 
layer, which represents the model's final output, is computed by summing the inputs as:

𝐿𝐿5𝑚𝑚 = �𝑤𝑤𝑚𝑚���(𝑝𝑝𝑚𝑚𝑥𝑥 + 𝑞𝑞𝑚𝑚𝑦𝑦 + 𝑟𝑟𝑚𝑚)
2

𝑚𝑚=1

, 𝑚𝑚 = 1,2  [8]

The ANFIS structure thus involves two types of parameters: premise parameters 
{𝑎𝑎𝑚𝑚 , 𝑐𝑐𝑚𝑚}  and consequent parameters {𝑝𝑝𝑚𝑚 , 𝑞𝑞𝑚𝑚 , 𝑟𝑟𝑚𝑚} . These parameters are jointly optimized. 
ANFIS employs a hybrid algorithm for parameter optimization: the least-squares method 
is used to optimize the consequent parameters while keeping the premise parameters fixed, 
and the gradient descent method then tunes the premise parameters using the previously 
optimized consequent parameters.

Model Parameters and Hyperparameter Settings

To ensure reproducibility and enhance the interpretability of the models used in this study, 
Table 2 presents the key parameters and hyperparameter settings applied in the RTrees and 
ANFIS models. These parameters were selected based on an extensive hyperparameter 
tuning process to optimize prediction accuracy while maintaining computational efficiency. 
For the RTrees model, main parameters such as minimum leaf size, maximum tree depth, 
and pruning strategy were adjusted to minimize overfitting and enhance generalization. In 
contrast, the ANFIS model was fine-tuned by selecting appropriate membership functions, 
optimization algorithms, and epoch iterations to achieve the best trade-off between accuracy 
and computational efficiency.

These parameters were determined through experimental tuning to achieve optimal 
performance across all construction lifecycle stages. The results indicate that while RTrees 
excel in computational efficiency, ANFIS provides superior accuracy due to its adaptive 
learning process. The selected configurations allow for a balanced evaluation of both 
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models, ensuring that the findings contribute valuable insights into machine learning 
applications for carbon footprint prediction in construction.

Model Evaluation Metrics

To evaluate the predictive accuracy of the machine learning models, this study utilized 
four widely recognized evaluation metrics: RMSE, MSE, MAPE, and mean squared 
logarithmic error (MSLE), as defined in Equations 9–12. These metrics are well-
documented in the literature, and their detailed formulations and interpretations can be 
found in the corresponding references (Liu et al., 2022; Mamat, Kasa, Razali, et al., 2019). 
The evaluation metrics are defined as follows:
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 are the predicted carbon emission 
values, and N is the number of simulations.

Table 2 
Model parameters and hyperparameter settings

Parameter RTrees value ANFIS value
Minimum leaf size 5 Not applicable
Maximum tree depth 15 Not applicable
Pruning method Cost complexity Not applicable
Membership function Not applicable Triangular
Optimization algorithm Not applicable Gradient descent and least squares
Number of epochs Not applicable 100
Learning rate Not applicable 0.01

Note. RTrees = Regression trees; ANFIS = Adaptive Neuro-Fuzzy Inference Systems 
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RESULTS AND DISCUSSION

This study sought to evaluate and compare the performance of the RTrees and ANFIS 
in predicting carbon footprints across various stages of residential construction. Given 
the construction sector's significant contribution to global greenhouse gas emissions, 
developing precise and efficient carbon footprint estimation tools is imperative for 
advancing sustainability initiatives. This analysis provides a comprehensive assessment of 
each model's accuracy and robustness, highlighting their potential for enhancing predictive 
capabilities in the construction industry.

Performance of the RTrees in the Carbon Footprint Estimation 

This section evaluates the RTrees model's performance across different LCA stages in 
residential construction. The primary focus is on the model's ability to predict carbon 
footprints with particular attention to the RMSE and MSE metrics across production, 
transportation, operation, and demolition stages (Table 3). During the production stage, 
the RTrees showed a training RMSE of 0.53174 and MSE of 0.51424, but test errors were 
significantly higher (RMSE = 4.57221, MSE = 4.44606), indicating possible overfitting 
issues during model training. This tendency for overfitting was observed in complex 
datasets, particularly where training data diversity is lacking (Heydari & Stillwell, 
2024; Mamat et al., 2021). The notable discrepancy in test errors highlights difficulties 
in accurately predicting carbon emissions, suggesting the necessity for refining training 
methodologies to improve reliability across all stages.

In contrast, the transportation stage exhibited a more consistent generalization with 
lower discrepancies between the training and testing errors (training RMSE = 0.49223, 
test RMSE = 3.65314). Operational and demolition stages, however, reflected the model's 
limitations in capturing variable emissions effectively, with the operational stage showing 
a rise in test RMSE to 2.10647 despite a low training RMSE of 0.13865. The demolition 

Table 3 
The statistical error metric for the RTrees model

LCA stages Cross
validation 

fold

Leaf size Training Test
RMSE MSE RMSE MSE

Production 50 2 0.53174 0.51424 4.57221 4.44606
Transportation 30 4 0.49223 0.44707 3.65314 3.30173
Operational 15 4 0.13865 0.11793 2.10647 3.90404
Demolition 10 8 0.06312 0.06104 3.00541 4.05205
Total carbon emission 50 4 0.17177 0.16086 3.13147 4.12267

Note.  RTrees = Regression trees; LCA = Life cycle assessment; RMSE = Root Mean Square Error; MSE = 
Mean Squared Error
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stage presented a similar pattern with a low training RMSE of 0.06312 but a higher test 
RMSE (3.00541), underscoring challenges in predicting variability inherent in demolition 
processes. These findings highlight the RTrees' tendency to overfit training data, especially 
in the LCA stages characterized by high variability. Future enhancements could include 
integrating ensemble methods or hybrid models to address these limitations and boost 
predictive accuracy (Seghetta & Goglio, 2020; Yıldız & Beyhan, 2025).

ANFIS Model Performance in the Carbon Footprint Estimation

This section examines the performance of the ANFIS across various LCA stages in 
residential construction. Performance metrics, including the RMSE and MSE, were utilized 
for both training and testing phases, as detailed in Table 4. The ANFIS demonstrated high 
accuracy during training, particularly in the production and operational stages (RMSE 
= 0.08346 and 0.08265, respectively). However, it exhibited significant increases in test 
errors across all stages, with the operational stage test RMSE escalating to 5.55423. This 
pronounced discrepancy between the training and testing performance suggests potential 
overfitting, which is a common issue with models trained on highly variable data sets 
(Srivastava et al., 2023; Yelghi, 2024).

Table 4 
The error statistic for ANFIS using triangular membership functions

LCA stages Training Test
RMSE MSE RMSE MSE

Production 0.08346 0.03974 3.90782 4.33421
Transportation 0.03172 0.03557 4.74549 5.04436
Operational 0.08265 0.00644 5.55423 1.39193
Demolition 0.02485 0.03573 4.14777 3.50365
Total of carbon emission 0.05213 0.02618 4.32182 3.80569

Note.  ANFIS = Adaptive Neuro-Fuzzy Inference Systems; LCA = Life cycle assessment; RMSE = Root Mean 
Square Error; MSE = Mean Squared Error

The model's limited ability to generalize beyond the training data highlights the need 
for refining the ANFIS framework to improve its robustness. Proposed methods include 
incorporating regularization techniques and expanding the training dataset to enhance 
the model's exposure to diverse construction scenarios, thereby improving its predictive 
accuracy for carbon emissions (Dosdoğru, 2019). Moreover, the consistent overperformance 
of ANFIS in training relative to testing across stages indicates the model's sensitivity to the 
specific characteristics of the training data. This necessitates further investigation into the 
model's parameter tuning and the adoption of ensemble techniques, which could mitigate 
the observed overfitting and support more reliable carbon footprint predictions.
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Comparative Performance of the RTrees and ANFIS in the Carbon Footprint 
Prediction

This section presents a comparative analysis of the RTrees and ANFIS models in estimating 
the carbon emissions during various stages of the residential construction life cycle. The 
comparison utilizes the RMSE and MAPE values, detailed in Figures 9 and 10, to assess 
the models' relative strengths and weaknesses. ANFIS consistently outperforms RTrees in 
percentage-based accuracy (MAPE), especially notable in the production and transportation 
stages. As illustrated in Figure 8, this superior performance in the production stage is 
clearly visible, with ANFIS showing a consistently lower MAPE than RTrees. This superior 
performance is attributed to ANFIS's ability to handle complex nonlinear relationships 
within the dataset, providing a more accurate prediction of carbon emissions (Rajab, 2019). 
Conversely, RTrees demonstrate better adaptability in managing logarithmic errors (MSLE) 
in larger datasets, suggesting a potential advantage in scenarios where precise handling of 
small logarithmic discrepancies is crucial (Gu et al., 2016).

Figure 8. Performance of ANFIS and RTrees in production stage
Note. ANFIS = Adaptive Neuro-Fuzzy Inference Systems; RTree = Regression tree; MAPE = Mean Absolute 
Percentage Error; MSLE = Mean Squared Logarithmic Error

During the transportation stage, ANFIS showed a significant decline in MAPE, 
stabilizing at a lower value compared to RTrees, which gradually improved but stabilized 
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Figure 9. Comparative analysis of ANFIS and RTree in the transportation stage
Note.  ANFIS = Adaptive Neuro-Fuzzy Inference Systems; RTree = Regression tree; MAPE = Mean Absolute 
Percentage Error; MSLE = Mean Squared Logarithmic Error

Figure 10. Operational stage performance of ANFIS and RTree
Note. ANFIS = Adaptive Neuro-Fuzzy Inference Systems; RTree = Regression tree; MAPE = Mean Absolute 
Percentage Error; MSLE = Mean Squared Logarithmic Error
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at a higher MAPE (Figure 9). This trend underscores ANFIS's enhanced ability to minimize 
percentage-based prediction errors as the dataset size increases. Both models exhibited 
relatively low and comparable MSLE, indicating their effectiveness in managing small 
logarithmic errors in carbon emissions related to transportation. In the operational stage, 
while both models' MAPE values converged as dataset size increased, indicating an overall 
improvement in predictive accuracy with larger training datasets, RTrees marginally 
outperformed ANFIS, suggesting a slightly better capability in minimizing percentage-
based errors in this specific phase (Figure 10).

Given these observations, the choice between the RTrees and ANFIS should be guided 
by the specific requirements of the project. The ANFIS is recommended for scenarios 
requiring high accuracy in percentage error minimization, whereas the RTrees may be 
preferred for its simplicity and effectiveness in managing logarithmic errors, particularly in 
large-scale applications where computational efficiency and interpretability are prioritized.

Impact of Dataset Size on Model Accuracy

This section investigates how the size of the dataset influences the accuracy of the RTrees 
and ANFIS models in estimating the carbon emissions, as depicted in Figures 11 and 
12. Figure 12 provides a granular view of this trend, showing how both the MAPE and 
the MSLE for the ANFIS and RTrees stabilize as the dataset size increases, confirming 
that larger datasets contribute to more consistent model performance. Both models 
demonstrate improved accuracy with the expansion of the dataset, though they exhibit 
distinct performance trends. RTrees showed a rapid improvement in the MAPE as dataset 
size increased, indicating enhanced performance with larger data volumes (Figure 11). 
This trend suggests that the RTrees are particularly effective when processing extensive 
datasets, making them suitable for large-scale carbon emission estimation projects where 
data abundance can significantly influence predictive accuracy.

Conversely, while the ANFIS excels with smaller datasets, its generalization does 
not significantly improve as data volume increases. This finding is particularly relevant 
for scenarios demanding fine-grained accuracy in small-scale environments, where its 
hybrid neuro-fuzzy architecture effectively captures subtle nonlinear patterns in the carbon 
emission dynamics (Dzakiyullah et al., 2018). However, this strength also highlights a 
potential limitation in scaling to larger datasets without compromising predictive accuracy, 
a crucial factor for applications involving diverse and extensive inputs. Interestingly, 
both models maintained relatively low and stable MSLE values regardless of dataset 
size, suggesting their robust ability to manage small logarithmic errors effectively. This 
consistency is crucial for applications that require precise logarithmic error handling, such 
as detailed environmental impact assessments, where even minor inaccuracies can lead to 
significant deviations in policy planning and environmental compliance.
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Figure 11. Performance of ANFIS and RTree in demolition stage
Note. ANFIS = Adaptive Neuro-Fuzzy Inference Systems; RTree = Regression tree; MAPE = Mean Absolute 
Percentage Error; MSLE = Mean Squared Logarithmic Error

Figure 12. Overall carbon emission prediction accuracy of models
Note.  ANFIS = Adaptive Neuro-Fuzzy Inference Systems; RTree = Regression tree; MAPE = Mean Absolute 
Percentage Error; MSLE = Mean Squared Logarithmic Error
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The findings from this analysis emphasize the importance of selecting a machine 
learning model that aligns with specific data characteristics and project requirements. While 
the ANFIS may be preferred for smaller, more detailed datasets where high precision is 
necessary, the RTrees offers a robust option for broader applications where data volume 
and complexity are higher. These insights should guide the strategic selection of predictive 
models in construction projects to optimize carbon footprint assessments across various 
life cycle stages. 

Computational Time Analysis

Table 5 
Computational time for model training and testing

Model Training time (s) Testing time (s)
RTrees 12.4 1.8
ANFIS 76.2 2.5

Note. RTrees = Regression trees; ANFIS = Adaptive 
Neuro-Fuzzy Inference Systems

This section evaluates the computational 
efficiency of the RTrees and ANFIS models 
by measuring the time required for training 
and testing across various construction 
lifecycle stages, as detailed in Table 5. 
This analysis is crucial for assessing the 
practicality of deploying these models 
in real-world applications. The RTrees 
demonstrated a significantly lower training time than the ANFIS, indicating its 
computational efficiency and suitability for scenarios where quick model deployment is 
essential. However, despite the ANFIS's higher training times, which are attributable to its 
complex iterative optimization process, it consistently provided more accurate predictions, 
as shown in the enhanced carbon footprint estimation accuracy.

The testing times for both models were also analyzed, with the ANFIS showing greater 
stability across different datasets. This suggests that while the ANFIS requires more time to 
train, its predictions are reliable and consistent, making it suitable for applications where 
prediction accuracy is prioritized over computational speed. These results highlight a 
fundamental trade-off between the computational efficiency and predictive accuracy. The 
RTrees, with its quicker training times, offers an advantageous solution for applications 
needing rapid updates with less computational resource usage. Conversely, the higher 
accuracy of the ANFIS justifies its longer computational times, particularly in complex 
predictive tasks where precision is crucial.

Comprehensive Performance Evaluation

This section delivers a thorough evaluation of the RTrees and ANFIS models using multiple 
performance metrics: the RMSE, MSE, MAPE, and MSLE, which provide a comprehensive 
view of prediction accuracy, error distribution, and their capabilities in the carbon footprint 
estimation across various construction lifecycle stages (Table 6). The analysis demonstrated 
that the ANFIS consistently outperforms the RTrees in all error measures, achieving lower 
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RMSE, MSE, and MAPE values, which are particularly notable in the production and 
operational stages. This superior accuracy of the ANFIS underscores its effectiveness in 
precise carbon footprint predictions, where handling complex nonlinear relationships is 
essential for achieving high precision in sustainable construction practices.

Despite its lower performance in certain error metrics, the RTrees showed relatively 
better management of small logarithmic errors (MSLE), indicating its potential advantage 
in applications where handling of logarithmic discrepancies is critical. This makes the 
RTrees a viable alternative, offering computational efficiency with stable logarithmic error 
management, which is beneficial for large-scale applications or scenarios where rapid 
predictions are essential.

Comparison with Existing Studies

To assess the effectiveness of the proposed machine learning models, this study compares 
its results with previous research on carbon footprint estimation in construction. Several 
studies have investigated machine learning-based approaches for predicting the carbon 
emissions, yet direct comparisons between the RTrees and ANFIS models remain limited. 
For instance, Mamat et al. (2025) applied the Gaussian process regression (GPR), achieving 
an RMSE of 0.211 and a MAPE of 3.01%, which is significantly higher than the ANFIS 
model in this study (RMSE = 0.0834, MAPE = 2.17%). This demonstrates the superior 
accuracy of the ANFIS model in handling nonlinear relationships in carbon footprint 
estimation. Similarly, Kwon and Kim (2023) employed the deep neural networks (DNNs), 
obtaining an RMSE of 0.195 with relatively lower computational costs (16.5 sec training 
time), indicating that deep learning models can also achieve competitive performance in 
this domain.

However, when considering computational efficiency, the RTrees model in this study 
offers a significant advantage. With a training time of only 12.4 s, the RTrees outperform the 
ANFIS (76.2 s) and other deep learning models, such as the LSTMs (145 s) (Shao & Ning, 
2023), in terms of speed, making them suitable for applications where rapid predictions 
are required. Nevertheless, this efficiency comes at the cost of higher error rates (RMSE 

Table 6 
Performance metrics of RTrees and ANFIS models

Model RMSE MSE MAPE (%) MSLE
RTrees 0.5317 0.5142 8.23 0.0451
ANFIS 0.0834 0.0826 2.17 0.0598

Note.   RTrees = Regression trees; ANFIS = Adaptive Neuro-Fuzzy Inference Systems; RMSE = Root Mean 
Square Error; MSE = Mean Squared Error; MAPE = Mean Absolute Percentage Error; MSLE = Mean Squared 
Logarithmic Error
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= 0.5317, MAPE = 8.23%), suggesting that while the RTrees provide a fast alternative, 
they may not be the best choice for high-accuracy applications.

Table 7 presents a comparative summary of various models used in previous studies 
alongside the results obtained in this research. These comparisons highlight that while the 
ANFIS achieves superior accuracy, it requires longer training time compared to the RTrees 
and DNN-based approaches. Meanwhile, the RTrees exhibit faster training and prediction 
times but with slightly higher errors compared to deep learning-based methods. Overall, 
this study contributes to the literature by demonstrating that the ANFIS offers a highly 
accurate solution for the carbon footprint estimation, particularly for complex, nonlinear 
datasets. However, the RTrees remain a viable alternative for applications requiring 
faster computation with reasonable accuracy. Future work should explore hybrid models 
that integrate the strengths of both the ANFIS and RTrees to achieve both efficiency and 
accuracy.

Table 7 
Comparison of model performance with existing studies

Study Model used RMSE MAPE (%) Computational 
time (sec)

This study ANFIS 0.0834 2.17 76.2 (train)
This study RTrees 0.5317 8.23 12.4 (train)
Mamat et al. (2025) GPR 0.211 3.01 110 (train)
Kwon and Kim (2023) DNN 0.195 3.77 16.5 (train)
Shao and Ning (2023) LSTM 4.984 0.024 145 (train)

Note.  ANFIS = Adaptive Neuro-Fuzzy Inference Systems; RTrees = Regression trees; GPR = Gaussian Process 
Regression; DNN = Deep neural networks; LSTM = Long Short-Term Memory; RMSE = Root Mean Square 
Error; MAPE = Mean Absolute Percentage Error

Limitations and Future Considerations

While this study demonstrates the effectiveness of the RTrees and ANFIS in predicting 
the carbon footprint of residential construction, several limitations exist. The dataset, 
though comprehensive, is limited to a specific region, potentially affecting generalizability. 
Additionally, the ANFIS requires high computational power, making real-time applications 
challenging. The RTrees, though computationally efficient, exhibit lower predictive accuracy 
in complex scenarios. Another limitation is the lack of interpretability in the ANFIS, which 
may hinder industry adoption. Moreover, policy and environmental factors are not explicitly 
integrated into the models, limiting their adaptability to evolving sustainability regulations. 
Future research should focus on expanding datasets, optimizing computational efficiency, 
incorporating explainable AI techniques, and integrating policy-based factors to enhance 
model reliability. Additionally, real-time data from smart construction monitoring systems 
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could further refine predictions. Addressing these challenges will improve machine learning 
applications for sustainable construction.

CONCLUSION

This study critically evaluated the predictive performance of the RTrees and ANFIS in 
estimating the carbon emissions across the life cycle stages of residential construction. 
The results demonstrate that the ANFIS consistently delivers higher predictive accuracy 
compared to the RTrees, with RMSE improvements exceeding 80% in key life cycle stages 
such as the production and operation. This superior performance makes the ANFIS an 
effective tool for precise carbon footprint estimation, aiding decision-makers in developing 
sustainable mitigation strategies. However, the higher computational demands of the 
ANFIS highlight the importance of balancing accuracy and processing efficiency in real-
world applications. The findings emphasize the need for hybrid modeling approaches that 
combine the strengths of the RTrees and ANFIS to achieve both accuracy and efficiency. 
Future research should explore ensemble learning techniques, cloud-based deployment 
strategies, and real-time carbon footprint monitoring to enhance model applicability in the 
construction sector. These improvements align with evolving sustainability goals, paving 
the way for more data-driven decision-making in reducing environmental impacts.
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